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Complexity and Limits 

to Knowledge: 
The Importance of Uncertainty

P e t e r  A l l e n  a n d  J e a n  B o u l t o n

INTRODUCTION

This chapter examines how complexity 
science faces up to the material fact of 
uncertainty and the very real limits to knowl-
edge. Indeed it shows how ignorance, the 
impossibility of having full knowledge and 
the inevitability of uncertainty, are both the 
result of, and the driving force behind, evolu-
tion and change. The chapter will review how 
this affects the exploration of complex 
problems and in particular the approaches to 
the mathematical modelling of their embed-
ded but often un-defined limitations. This 
involves examining the assumptions that are 
necessary in order to represent a ‘situation’ in 
terms of changes in the values of a particular 
set of variables and the ways this whole struc-
ture moves forwards over time. Our feeling of 
‘understanding’ seems to correspond to the 
degree of predictability such methods imply, 
since we feel that we do not ‘understand’ a 
situation when we are unable to predict future 
behaviour. This definition of ‘understanding’ 
is questionable, however, since it assumes that 
the future already exists within the present 
and that it can therefore be determined. But 

this does not allow for learning, adaptation, 
change, exploration or creativity of any kind. 
In short it corresponds to an assumption of 
the stability and fixity of:

the initial system – the mechanisms that link  •
the variables
the internal responses inside each individual  •
element
the system’s environment •

In other words we ‘understand’ things by 
assuming that they will continue to do what 
they are doing; we pay less attention to 
how, why or when they came to be like this, 
and to what they may do, individually and 
collectively, in the future.

In addition to this great simplification 
that assumes fixity and unchanging behav-
iour, often a further assumption is made of 
dynamic ‘equilibrium’ whereby even the 
trajectory of the system of fixed mecha-
nisms is supposed to have run itself to a 
stationary state, independent of the particu-
lar history or movements that actually took 
place. So we assume that it is generally 
appropriate and possible to understand most 
situations through investigating a static end 
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point rather than by exploring how things 
change. Clearly this is an even-more- 
unlikely assumption than believing in fixed, 
deterministic dynamics; but nevertheless 
this idea has been dominant in economics, 
creating a false impression of certainty and 
of the existence of a deterministic relation-
ship between the state of a market and the 
external conditions in which it sits.

Complexity, and indeed the presence of 
coupling and feedback between interacting 
elements, shows the limits of these simplifying 
assumptions. The sources of uncertainty are 
manyfold-:

Uncertainty in the behaviour of individual  •
elements inside the system
Uncertainty in the collective behaviour of the  •
system
Uncertainty in the way the system interacts with  •
other systems
Uncertainty in the boundaries of what we define  •
as a system or systems
Uncertainty in the environment in which the  •
system is immersed and the way the system 
responds to changes in this
Uncertainty in how any description of elements,  •
systems or the environment may change 
over time

We argue that, in the real world, uncertainty 
is a real experience and ‘exists’; and this 
embracing of uncertainty is the fundamental 
underpinning of complexity science. It is the 
science that arises when the questionable, 
even incredible, simplifications that lead to 
assumptions of determinism and prediction 
cannot be made.

In this chapter we explore the ontology of 
uncertainty, from ancient cosmologies 
through Darwin to Prigogine and the begin-
nings of complexity theory. We then transfer 
our interest to the epistemological questions 
as to how you explore, or indeed ignore, 
uncertainty. We take an overview of ways of 
exploring complex problems, focusing in 
particular on mathematical modelling; we 
look at how uncertainty is handled or ignored 
or even denied through the use of various 
simplifying assumptions.

We then move our focus more specifi-
cally to human systems and take the exam-
ple of economics; we consider how 
uncertainty has been considered, histori-
cally, in the field of economics. Finally, we 
present an example of the impact of includ-
ing uncertainty in an evolutionary model of 
a market.

THE HISTORICAL ROOTS 
OF UNCERTAINTY

The pre-Socratics and ‘becoming’

Our current dominant worldview which 
underpins most mainstream schools of 
thought in economics, policy-making, 
management, education and development 
still centres on the mechanistic idea that the 
world is objective, measurable, predictable 
and controllable and that is despite almost 
overwhelming evidence to the contrary. 
Uncertainty has not had a place in this view, 
apart from as a limiting irritation, to be over-
come by increasing knowledge and greater 
scholarship. Has this always been the case? 
Early philosophers in both the East and West 
held a much more sophisticated position: they 
have seen the world as changing and flowing, 
but yet with a degree of order and patterning 
that arose intrinsically, from within.

This image of flow and change is 
captured in the following fragment, part of 
the few remaining writings of Heraclitus 
(Kirk et al., 1957).

Upon those that step into the same rivers different 
and different waters flow … They scatter and … 
gather … come together … and flow away … 
approach and depart.

The Hindu Upanishads and the Dao de 
Jing present a similar sense of temporary pat-
terning emerging without the need for extrin-
sic design or planning.

And Democritus (Monod, 1970) said:

Everything existing in the universe is the result of 
chance and of necessity.
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Plato, however, refused to believe that 
form or patterning could arise without external 
design and introduced the idea of a Creator 
who, guided by pre-existent perfect forms, 
created a world, which emulated and aspired 
to them. Uncertainty and fluctuations were 
seen as irritating limitations and something 
to be overcome; they were not seen to serve 
any useful purpose.

This theme of perfection and order then 
paved the way for the seizing of Newton’s 
mechanics, in the seventeenth century, by 
French Enlightenment thinkers and became 
the dominant world view; where order, 
prediction and control are regarded as 
attainable and desirable and variation is viewed 
both as a nuisance and largely irrelevant. How 
did this happen? Why was Newton’s theory of 
physics, which in fact applied, merely, to cer-
tain limited problems of interaction between 
discrete objects, seized on as the dominant 
worldview? Many authors (for example 
Toulmin, 2001) have written on this topic at 
length. In summary, Newtonian thinking sup-
ports the notion of ‘the grand design’, and of 
the view that logic and reason will lead to the 
‘right’ answer; indeed it implies there is a 
predictable ‘right’ way and ‘right’ answer. So 
it represents a way, a rationale, to control 
chaos, to be efficient, to overcome supersti-
tion, to make things happen in a predictable 
fashion; this is very beguiling.

Darwin and variation

In contrast to this view of achievable perfec-
tion, stands the messy and inefficient and 
surprising process of evolution. It was Darwin 
(1859) who recognised that uncertainty is 
indeed necessary for change to happen. 
Whilst the realisation that animals and plants 
evolve had been recognised for decades 
before Darwin’s expedition on the Beagle, 
indeed by his own grandfather (Darwin, 
1794), Darwin’s contribution was to suggest 
that variation was a fundamental part of how 
this happened.

Charles Darwin wrote (1978: 169):

In 1838 … I happened to read for amusement 
Malthus on Population, and being well prepared to 
appreciate the struggle for existence which every-
where goes on …, it at once struck me that … 
favourable variations would tend to be preserved, 
and unfavourable ones to be destroyed. The results 
of this would be the formation of new species.

The notion of messiness as playing a 
useful role, fundamental to innovation, 
adaptability and change, is very significant. 
Despite its seeming acceptance there is still 
much resistance to its implications as evi-
denced by the continued focus on prediction, 
design, control, measurement and an endless 
search for certainty.

The idea that variation is a pre-requisite 
for evolution and change to happen was a Big 
Idea that subsequently captured the imagina-
tion of philosophers, psychologists, sociolo-
gists – and eventually physical and biological 
scientists. For example, the Pragmatist 
Charles Peirce (1955) was one of the first to 
recognise the wider implications of evolution 
as a worldview. In 1891, he wrote:

Now the only possible way of accounting for the 
laws of nature and the uniformity in general is to 
suppose them results of evolution. This supposes 
them not to be absolute, not to be obeyed pre-
cisely. It makes an element of indeterminacy, spon-
taneity, or absolute chance in nature.

Equally, William James (1995) explains in 
1884:

Of two alternative futures which we conceive, 
both may now be really possible; and the one 
become impossible only at the very moment when 
the other excludes it by becoming real itself. … To 
that view, actualities seem to float in a wider sea 
of possibilities out of which they are chosen; and, 
somewhere, indeterminism says, such possibili-
ties exist, and form a part of truth.

So, the early philosophers noticed the 
world changed in an uncertain way but 
nevertheless had form; Darwin recognized 
that variation and uncertainty were in fact 
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central to the emergence of new form; it was 
the physicist Prigogine (1947) who took the 
next step. He started to explore how uncer-
tainty led to emergence and evolution, and 
how the future is in principle unknowable. 
This was the beginning of the new science of 
Complexity.

Prigogine’s early insights 
into the relationship between 
function and variation

Prigogine (1997), in his autobiography, tells 
us that, in his adolescence, Henri Bergson’s 
(1911) book ‘L’évolution créatrice’ cast a 
spell on him. Bergson posed the question as 
to why, if physics, in the form of the second 
law of thermodynamics, proposes that matter 
and form degrades into structureless dust, 
does life mount the incline that matter 
descends (Bergson, 1911: 245). He focused 
on the image of the universe as ‘becoming’ 
rather than ‘being’ and recognized that what 
is real is the continual change of form: form 
is only a snapshot view of a transition 
(Bergson, 1911: 301).

Prigogine’s initial interest was in non-
equilibrium thermodynamics and led to con-
siderations of how patterns in certain chemical 
and hydrodynamic systems open to the envi-
ronment came to emerge. He was inspired by 
the work of Bénard (Jantsch, 1980), a French 
physicist who discovered patterns of convec-
tion cells in a liquid layer when heat is 
applied from below, and through the experi-
ments of two fellow Russians, Belousov and 
Zhabotinsky (Jantsch, 1980), who discov-
ered, in a particular mix of chemicals, that 
the colour of the mix oscillated between 
yellow and clear. Alan Turing (1950) was 
also making similar discoveries.

Prigogine (1947, 1996) is perhaps best 
remembered for these explorations of non-
equilibrium thermodynamics. His subsequent 
work (Prigogine, 1978), showed that the 
emergence of patterns (later called self-or-
ganization) came from the inter-relationship 
of the function of the underlying process 

together with fluctuations. Monod (1970) 
explores a similar theme in his book, Chance 
and Necessity though he assumes that the 
chance of creative events is small whereas 
Prigogine took such events to be inevitable 
and frequent. By function, Prigogine was 
referring to the underlying internal dynam-
ics; in an ecology, for example, this would 
define what drove the ‘rules’ of interactions; 
who can eat whom, what food intakes are 
typical, how long it takes for mature fish to 
grow and so on. He also underlined the fact 
that the particular history of a particular ecol-
ogy or market or chemical system depends 
on the particularity of chance events or vari-
ations. This complex, systemic view intro-
duces ‘history’ into science (Prigogine, 
1978). It implies that most situations cannot 
entirely be understood through mathematical 
equations defining universal laws.

As an example, if we consider a pond, and 
consider the density of pondweed, the tem-
perature of the water, the size, age and type 
of fish, the size of the ripples on the water, 
such factors will not be uniform over the 
pond or with time. Furthermore, if we ignore 
these variations, we run the risk of throwing 
out the very information that determines 
future states. It is this fine-graining, which 
Allen (1997) termed micro-diversity, that is 
fundamental to the potential for self-organi-
zation, self-regulation, the potential for emer-
gence of radically new qualities and forms  
and for the fact that the future is under per-
petual construction (Prigogine, 1997: 1). 
Prigogine emphasized that fluctuations play 
an essential role (1978: 781) and affect the 
direction the system subsequently follows. 
As Jantsch (1980: 6) states:

a system now appears as a set of coherent, evolv-
ing, interactive processes which temporarily mani-
fest in globally stable structures.

This combination of coherent behaviour 
and yet random variation gives the tension 
between ‘chance and necessity’, between 
‘uncertainty and prediction’. Chance fluc-
tuations give the system its unique history 
and yet the movements take place in the 
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context of coherent dynamics which are 
stable, at least for a time. As Allen (1997: 
16) explains:

[this] begins to throw light on the basic difference 
thought to exist between ‘science’ and ‘history’. In 
the former, explanation was believed to be trace-
able to the working of eternal, natural laws, while 
the latter provided explanation on the basis of 
‘events’. In this perspective of self-organising sys-
tems we see that both aspects are present and 
that such systems are not described adequately 
by either laws (their internal dynamics) or events 
(fluctuations) but by their interplay.

THE DEVELOPMENT 
OF COMPLEXITY SCIENCE

Hiding complexity

Following the early insights into complexity 
and the importance of non-average events and 
non-average types, we can situate the many 

different ways that the real complexity of the 
world is hidden in contingent, closed and 
simplified representations. This is shown in 
Figure 10.1 which illustrates the different types 
of representation and mathematical models 
that arise from successive assumptions about 
stability within and outside the system.

Figure 10.1 represents, starting from 
‘reality’ on the left, which is full of uncer-
tainty and doubt, and, making successive 
assumptions about the piece of ‘reality’ 
under study, one passes from complete 
uncertainty, through various intermediate 
views to one of complete deterministic cer-
tainty when prediction is believed possible. 
We will look at these in turn to see how the 
actual complexity and uncertainty of ‘real-
ity’ is hidden from view and tools and 
models are developed that appear to offer 
control and knowledge to those that possess 
them. In essence the things that make 
prediction ‘possible’ are closure to outside 
influences and fixity within.
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Figure 10.1 The different kinds of models and understanding attained by making successive 
assumptions about uncertainty in moving from the left to the right of the figure
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‘Reality’
One can argue that we need make no assump-
tions and should just engage with ‘reality’. 
Whilst we can interact with particular situa-
tions and contexts in ‘real life’, it is impos-
sible, in general, to work in this way as the 
amount of information required to look at 
every detail, every nuance, is prohibitive. 
Lyotard (1984), in The Postmodern Condition 
gives the example of an emperor wishing to 
make a perfectly accurate map of his empire; 
the project leads the country to ruin as the 
entire population is needed to devote all its 
energy to cartography.

But, on the other hand, neither can we 
argue that problems have stable outcomes 
and are open to abstraction. Quoting Lyotard 
(1984) again: the continuous differentiable 
function is losing its pre-eminence as a para-
digm of knowledge and prediction. So what 
is to be done? Figure 10.1 shows us how, in 
scientific models, understanding and predic-
tion are achieved in practice by making suc-
cessive assumptions concerning the situation 
under study. On the left-hand side, where no 
assumptions have been made, there are no 
established types, variables or equations. We 
are in the realm of literary and historical 
endeavour, where we are describing and 
perhaps responding to what is happening, but 
are limited in our ability to learn or general-
ize or predict. It is the realm of post-
modernism, of action research and of many 
anthropological methods where we are 
reminded that any generalizations are likely 
to be misleading. Emphasis is placed on stay-
ing with the actual experience of what is, on 
focusing on the particularity of an actual, 
living situation and working with all the 
variation and all the uncertainty that is 
present.

Such heuristic methods are indeed very 
important and stop us from blindly applying, 
and indeed uncritically accepting, models 
and theories. However, we would argue that 
modelling plays its part as an aid to exploring 
complex problems and we are interested 
here in critiquing differing approaches to 

modelling and understanding their differing 
assumptions.

Evolutionary complex models
The first assumption, in moving away from 
‘raw reality’, is to say that there is a 
‘boundary’ and that some things will be 
considered to be inside and others will be 
outside, in the environment; even this assump-
tion must be handled carefully as boundaries 
may shift or may be permeable and any 
assertions or selections regarding boundaries 
will typically be open to the criticism that 
they are assumed or constructed. However, 
modelling allows us to explore and test such 
assumptions and understand the sensitivity to 
such choices.

The second assumption concerns that of 
‘classification’ in which we decide to label 
the different types of thing that populate our 
system. This might be biological species and 
perhaps their age cohorts, or, in social sys-
tems, people classified according to their 
ethnicity or philosophical beliefs, or their 
skills or professional activities; so in this way 
we specify the variables of the system.

What happens if we make only these two 
simplifying assumptions but still work with 
nonlinear interactions and feedback and 
allow ‘noise’ or variation in the system? We 
are in the realm of evolutionary complex 
models. In Figure 10.2 we see the results of 
a computer run in a 200 × 200 character 
space in which we study the populations over 
time where we have reproduction, explora-
tion (mutation) into neighbouring character 
cells, and both synergy and competition for 
resources for any particular type. What we 
find is the creation over time (time is down-
wards) of a simple ecology of populations 
(Corliss et al., 1990).

In this approach, we find that over time 
the constituent types may change. New types 
and activities emerge and others leave. Over 
time qualitative evolution occurs and the 
system is not structurally stable in that 
the variables and therefore the equations 
describing the mechanisms and processes at 
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work within it can change; there are a 
series of instabilities as new things emerge 
and others disappear.

Variations both determine which possible 
outcomes emerge and furthermore they 
shape the future possible dynamics. In other 
words, the microscopic variability and ran-
domness in the system drive evolution, 
confer on the system the ability to learn and 
hence to adapt and in so doing impact on 
the environment which co-evolves with it. 
There is no way that we can exclude ‘luck’ 
from the evolution and changes that occur in 
the system, and there is no way that we can 
banish uncertainty from our considerations.

Probabilistic dynamics; The 
Master Equation
With only two assumptions (boundary and 
classification) we see that the general evolu-
tionary model shows us that qualitative 
change will occur, that new qualities will 
emerge and others disappear; but cannot say 
exactly in what way or when. What happens 
if we make a further assumption that the 

dynamics, the basic interaction mechanisms 
that govern the situation cannot change, but 
we still allow fluctuations and non-
linearities?

Prigogine had established the central and 
creative role of variation and fluctuations 
in creating the future. Prigogine (Nicolis 
and Prigogine, 1977; Prigogine et al., 1977) 
and also Haken (1978) wanted to understand 
the way in which fluctuations play their part. 
Traditionally there were two distinct meth-
ods of exploring how a number of elements 
interacted. If there were a small number of 
elements, then it was possible (at least in 
principle) to track the movement and interac-
tion of each element. In contrast to this 
dynamical, mechanical method, if there were 
large numbers of elements, then statistical 
mechanics was used and the behaviour of the 
system was treated essentially as if it were a 
fluid and average qualities such as density 
or temperature, were tracked; elements were 
classified into categories and were assumed 
to be identical and unchanging and, most 
importantly, only the most probable events 
were assumed to occur. In both cases, gener-
ally, only first-order effects were calculated; 
so the interaction of any two elements in the 
dynamical case were assumed not to be 
affected by the presence of other elements; 
and in both cases interactions were assumed 
not to be influenced by previous interactions. 
These two methods, basic mechanics and 
statistical mechanics, sit off to the right of 
the processes shown in Figure 10.1; they are 
‘off the map’ in terms of their simplicity 
and their inability to deal with complex 
interactions and change.

Dynamical systems are deterministic but 
are sometimes very sensitive to initial 
conditions (when the parameters correspond 
to a ‘chaotic’ attractor); probabilistic systems 
are also deterministic but are largely 
independent of initial conditions and move 
towards equilibrium. How then do these 
two methods relate to each other and how 
can either method make sense of the role 
of fluctuations and the propensity for 

Figure 10.2 The emergence of a simple 
ecology over time for a population diffusing 
in a 200 × 200 character space. Each 
population has synergy and competition 
for resources
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self-organization and multiple possible 
outcomes?

Progress was made to resolve this dilemma 
through the use of the so-called ‘Master 
Equation’ that governs the dynamics of a 
probability distribution (Allen, 1988). This 
method allows one to work with all possible 
sequences of events, taking into account their 
relative probability, rather than just assume 
the most probable events occur, as would 
happen using ‘normal’ statistics. The collec-
tion of all possible dynamical paths is taken 
into account in a probabilistic way. But for 
any single system this allows into our scien-
tific understanding the vital notion of ‘free-
dom’ or ‘luck’ or ‘uncertainty’ in the behaviour 
of the system. Although, a system that is ini-
tially not at the peak of probability will more 
probably move towards the peak, it can per-
fectly well move the other way; it just happens 
to be less probable that it will. A large burst of 
good or bad luck can therefore take any one 
system far from the most probable average, 
and it is precisely this constant movement that 
probes the stability of the most probable state. 
It also points us towards the very important 
idea that the ‘average’ for a system should be 
calculated from the distribution of its actual 
possible behaviour, not that the distribution 
of its behaviour should be calculated assum-
ing the average is fixed.

Allen (1988), in the first instance, investi-
gated a simple grazing predator–prey system 
of two species; both species can reproduce 
and die. Traditional statistical mechanics 
would assume equilibrium and give an aver-
age outcome corresponding to a balance of 
numbers between the two species, depending 
on the food resources available. However, 
working with less simplification through using 
the Master Equation, Allen shows that for 
some conditions the probability distribution 
moves from whatever its initial condition is 
towards a distribution with two distinct peaks 
of probability. The first corresponds to the 
extinction of both species and the second to a 
stable balance between them. In other words, 
when the individual events that underlie the 

mechanisms are treated probabilistically, 
allowing for different possible sequences of 
events according to their probability, the state 
of the system demonstrates path-dependence, 
moving to one or other of the possible stable 
configurations. We see also that the word 
‘outcome’, which seems so innocuous, really 
hides an assumption of equilibrium, of 
having got to where it must go. But with non-
linearities in the interactions the system may 
have several different possible configurations 
to which it could ‘go’.

This simple example was very important. 
It shows how, if qualities are averaged as in 
‘normal’ statistical methods, the very detail 
that determines the path of the system is lost; 
that is to say a bifurcation occurs. It shows 
that working only with the most likely ‘out-
comes’, as with statistical mechanics, can be 
qualitatively misleading. So, the use of the 
Master Equation shows us the importance of 
the actual history of a particular real situa-
tion. Can we know which outcome would 
have happened in practice in the ‘real’ world? 
What would have tipped the system into one 
direction rather than the other? Or could both 
outcomes occur simultaneously in different 
places?

Stationary probability; solving 
the dynamic equations
The dynamic equations of probability that we 
have described in the last section are quite 
difficult to handle, involving correlated prob-
abilities of interacting variables and so fur-
ther assumptions are often used to make the 
problem simpler. There is a choice; either we 
can adopt a traditional scientific approach 
and try to ‘solve’ the dynamic equations 
to find their stationary solution; or we can 
decide to retain only the dynamics that 
results from the most probable events and 
follow the path that unfolds. This second 
approach, the dynamical systems approach, 
we will explore in the next section.

The first of these methods, ‘solving’ the 
dynamic equations to find their stationary 
solution, leads to particular probability 
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distribution functions shaped by the 
mechanisms contained in the Master Equation 
and gives a view of the final probability 
distribution to which, it is assumed, the prob-
lem has settled. For particularly simple mech-
anisms such as a ‘sand pile’ to which grains 
are continually being added (Bak, 1997) the 
probability of an avalanche of a given size can 
be calculated. These ideas have been applied 
to many different systems such as the proba-
bility of earthquakes, city sizes and firm sizes. 
The distribution of probability is often that of 
a ‘power-law’ that describes the probability of 
different-sized events. For instance, it might 
suggest that the probability of finding a city 
or firm twice the size of another is only one 
quarter, i.e. it follows an inverse square law. If 
this pattern holds for cities or firms of all 
sizes, then the distribution is said to be ‘scale 
free’ (Bak, 1997).

We would question this approach on two 
counts. First, how often, in practice, do we 
find data that corresponds to this kind of sta-
tionary, stable, scale-invariant distribution? 
For city and firm sizes the data over time tells 
us that there is still a great deal of dynamic 
change occurring, as cities and firms grow 
and decline (Batty, 2008). We may wish to 
assume stationarity, but even within a sta-
tionary probability distribution, there can 
still be considerable underlying changes 
occurring. In the spectrum of automobile 
manufacturers for example, Toyota recently 
replaced GM as the largest company, but 
recent problems may lead to further re-order-
ing in the distribution. And how can we 
decide whether the variations occurring at 
any given moment are simply fluctuations 
within the stationary probability distribution 
or instead reveal a changing distribution? For 
example, in considering climate change it is 
very difficult to tell whether some ‘freak 
weather’ event is simply an extreme event 
within the pre-existing distribution or is in 
fact an indicator of a change in the distribu-
tion. It is very difficult from the data to 
decide whether the assumption of stationar-
ity is justified.

Second, when nonlinear terms are present 
in the interactions between elements we 
know that different possible ‘attractors’ can 
exist and the corresponding probability func-
tions will be multi-modal (have different 
peaks corresponding to different possible 
solutions) and not tend to a single peak, a 
single stable outcome. Clearly, where there 
are multiple equilibria, the shape of the prob-
ability distribution will be described by much 
more complex mathematical functions than a 
power law, x-a, since it will have to describe 
several different peaks of probability. This is 
the situation we considered in the previous 
section as exemplified by the grazing 
predator–prey model.

Dynamical systems
If instead of asking ‘what will actually 
happen to this system?’, that requires us to 
deal with all possible system trajectories 
according to their probability, we ask ‘what 
will most probably happen?’ then we have a 
much simpler approach. We proceed by 
assuming that only the most probable events 
occur; that things happen at their average 
rates. This leads us into ‘system dynamics’ 
which is in general a nonlinear set of 
dynamical equations that appear to be predic-
tive and deterministic. In other words, they 
seem to allow the future trajectory of the 
system to be calculated. Such an approach 
would seem to provide a basis for policy and 
strategy analysis by comparing the differ-
ences made over time by investigating the 
impact of one intervention as opposed to 
another, that is, by running the model several 
times using different assumptions. This is a 
very tempting picture for any decision or 
policy maker. It appears to offer a way to test 
different decisions and allow their advantages 
and disadvantages to be compared.

In situations where not much is changing 
in the broader environment or indeed within 
the system itself, then system dynamics 
models may well provide a good representa-
tion of system behaviour. They can show the 
probable effects of a particular intervention, 
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assuming that no structural changes are pro-
voked. They can also show the factors to 
which the system is potentially very sensitive 
or insensitive, and this can provide useful 
information. But systems dynamics models 
are still deterministic; they still only allow 
for one solution or path from a particular 
starting point. It is the path into the future 
traced by average elements interacting through 
average events, and is only reasonable if non-
average elements and non-average events 
have no systemic effect; that is to say there is 
no self-organization or learning for example. 
Such systems can function but not evolve.

Risk, uncertainty and prediction

The important point that we need to reflect 
on is that such apparent powers of prediction, 
as implicit in deterministic models, is only 
real if, and only if the assumptions made in 
achieving it are in fact true. In other words 
the real uncertainty that may characterize the 
long-term evolution of an ecology, economy, 
market or firm is only banished by assump-
tion. In this light therefore, we must admit 
that understanding and predictions will only 
hold until things change and our expectations 
are confounded. Our methods therefore do 
not scientifically eradicate the uncertainty of 
an evolving world, but instead mask it and 
tell us that providing the system doesn’t 
change then we can predict what it will do. 
But clearly the uncertainty is now as to 
whether the system will change or not.

While it may be reasonable to believe that 
the system may hold its structure for short 
times, this becomes increasingly unlikely for 
longer times, since history has shown us that 
over longer time periods everything of inter-
est seems to change as new entities and types 
appear in the system and others become 
extinct.

What indeed is uncertainty? We would 
argue, along with Knight (1921), that uncer-
tainty is defined as that which cannot be 
known, as an ‘unknown unknown’; it is 

associated with the underlying structures and 
constructs themselves shifting, or disappearing 
and new ones appearing.

This is something more than risk. Risk 
refers to situations in which the variables and 
mechanisms are known as well as the dimen-
sions of the model and its environment, and 
signifies the case where these do not change. 
So stochastic nonlinear dynamics allow us to 
investigate risk, or known unknowns, but only 
evolutionary models allow us to consider true 
uncertainty.

COMPLEXITY AND UNCERTAINTY 
IN HUMAN SYSTEMS

The evolution of complex, resilient natural 
systems is linked to the retention of mecha-
nisms of adaptability within them and 
reflects an underlying lack of specific pur-
pose. Human beings, on the other hand, 
want to improve, direct or control systems 
for some particular end and because of this 
tend to eliminate any apparently unneces-
sary parts and to streamline operations. This 
leads to vulnerability, however, because 
though the system may operate better for a 
particular purpose it lacks alternative mech-
anisms that may be needed if circumstances 
changed. For example, the potential for 
growth and diversity of any society or city 
depends to an extent on the imagination of 
its people. But ideas cannot be produced by 
dictat, according to some rational plan. They 
depend on a population’s diversity and orig-
inality of thought; on its individual freedom 
and ability to experiment; and on the finer 
details of its history, culture and social inter-
actions. Generally speaking, microscopic 
diversity resulting from the mixing of cul-
tures and diverse doctrines will be an impor-
tant ingredient for a population’s survival, 
although nearly all rational planning aims at 
minimizing such ‘inefficient’ eclecticism.

In this chapter we cannot look at the way 
complexity and uncertainty are handled over 
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the whole breadth of social systems. We will, 
however, look at one example, that of 
economics.

Limits to knowledge in economics

Introduction
Complexity thinking has influenced the emer-
gence of evolutionary economics (Nelson and 
Winter, 1982; Metcalfe, 2007), ecological 
economics (Boulding, 1950, 1981; Georgescu-
Roegen, 1971; Daly, 1999; Costanza et al., 
2007), behavioural economics (Simon, 1955) 
and complexity economics itself (Beinhocker, 
2007). However, it is a self-evident truth 
and perhaps never more self-evident than in 
current times that there is a huge uncertainty 
in how any particular economic policy will 
play out in practice. For example, the neo-
liberal policies of the last several years have 
been predicated on the view that market 
forces, if left largely free, give the ‘best’ 
chance of ‘success’ and that regulation should 
be kept to a minimum; but ‘best’ in what 
respect, and success for whom? It appears 
that, whilst growth has been substantial, the 
divide between the incomes of the rich and 
the poor with this reliance on market forces 
has significantly increased (Harvey, 2005) 
and there has been a general tendency for 
diversity and consumer choice to reduce with 
markets increasingly dominated by decreas-
ing numbers of increasingly large players.

Equally, the deregulation of the money 
markets has led to a sort of pyramid selling, 
with a consequent collapse. And of course 
we are now, more than ever before, facing the 
question as to whether some natural resources 
are running out, whether population growth 
will overtake the ability of the land to feed it, 
whether climate change will rend many parts 
of the globe too hot or too dry or too drowned 
for human use. How can economics deal with 
these factors?

Perhaps what is most concerning about 
economic policies is that the system in ques-
tion, the global economic system, is hugely 
complex and full of uncertainties; we cannot 

assume the rationality and consistency of 
actors, nor that they act with all the informa-
tion they need; we cannot assume that the 
past is a good predictor of the future; we 
cannot assume stability; we cannot assume 
simple cause-and-effect relationships and be 
certain what causes what. This is hardly a 
surprise, yet the methods and assumptions of 
neo-classical economics still largely prevail. 
And on top of this, we cannot really isolate 
economic decisions from issues of social 
justice, the environment, security and the 
longer-term.

Equilibrium
How is uncertainty viewed within econom-
ics? Traditional neo-classical economics 
parallels and indeed borrows the assump-
tions embedded within the physics of 
equilibrium thermodynamics and implicitly 
assumes the economy is not far from 
equilibrium and that the mechanisms that 
influence it can be described as simple, 
linear, causal relationships. Any uncertainty 
or variety or learning or historicity or the 
possibility of multiple and reflexive 
inter-relationships are largely ignored within 
the models. Change is largely treated as an 
optimizing move towards equilibrium. If 
such a statistical approach were positioned 
on the diagram in Figure 10.1, such an 
approach in fact sits to the right of the 
models described due to the restrictiveness 
of its assumptions.

Why should things find balance or move 
towards equilibrium? Economists have bor-
rowed equilibrium theory from the natural 
sciences. But in physics this is based on the 
behaviour of certain types of closed systems 
and reflects the conservation of mass, energy 
and momentum at the microscopic level of 
molecular collisions. Is the transfer of this 
mathematical framework valid when model-
ling the economy, and is there evidence to 
support this approach? This attribution of 
science is very compelling. The economist 
Leon Walras, in ‘Elements of Pure Economics’ 
written in 1874 is unequivocal in asserting 
its validity. He says: this pure theory of 
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economics is a science which resembles 
the physico-mathematical sciences in every 
respect.

Social theorist Thorstein Veblen, as early 
as 1898, challenged these assumptions in 
his paper, Why is Economics not an Evolu-
tionary Science? In this he points out that 
assuming the economy moves towards equi-
librium or balance is a teleological argument; 
that is to say, it is assuming a pre-ordained 
end point to which things naturally move. 
Why should there be such an end point?

Veblen in fact, argued that to see the 
economy as evolutionary, constantly shifting 
as variations and new things challenge the 
status quo, is a much more rational perspec-
tive. Complexity economist Brian Arthur 
(1994) recognized that, to assume a move 
towards equilibrium, one had to assume that 
negative feedback loops prevail in economic 
relationships, leading to the notion of perfect 
competition based on supply and demand 
balanced by price; but there is no reason to 
suppose that this always prevails. Arthur 
points out that in many circumstances, posi-
tive feedback or increasing returns is the 
norm, and competition can be affected by 
small events and choices which ‘lock-in’ 
certain solutions and where successful 
firms keep growing at the expense of the 
competition.

Arrow (1994), points out that this insight 
was not new, but has surfaced every decade 
or two, throughout the history of economics, 
starting with Cournot in 1838. The idea that 
there are in practice multiple potential and 
temporary points of stability has been well-
aired in economic literature.

Economic Man
As well as assumptions about the underlying 
dynamics of the economy, neo-classical 
economic approaches need to assume, for 
ease of calculation, that consumers act ration-
ally, in the sense that Economic Man makes 
consistent, rational, easily analysable choices 
typical of his ‘type’; furthermore, competi-
tion is deemed to drive the economic proc-
ess; competition is regarded as ‘perfect’ in 

the sense that it is undertaken with full 
and perfect information available to all 
the players and that it plays itself out to 
completion.

The nature of Economic Man’s rationality 
is taken to mean that his decisions are about 
satisfying his own, and largely immediate, 
needs in a cost-effective manner. As Frank 
Knight (1921) points out:

economic man … is postulated as knowing defi-
nitely and accurately all the facts and magnitudes, 
knowledge of which would influence his behav-
iour. … The economic subject would in many cases 
have to have perfect foreknowledge as well as 
perfect knowledge.

In reality, Alan Greenspan (2008), reminds 
us that: the innate human responses that 
result in swings between euphoria and fear 
repeat themselves generation after genera-
tion with little evidence of a learning curve.

Risk and uncertainty in economics
The fact that the economic landscape is 
uncertain and risky is not a new thought. 
Frank Knight (1921) made his famous dis-
tinction between ‘risk’ (randomness with 
knowable probabilities) and ‘uncertainty’ 
(randomness with unknowable probabilities). 
Keynes (1937) reflected similarly:

By ‘uncertain’ knowledge …, I do not mean merely 
to distinguish what is known for certain from what 
is only probable. The game of roulette is not sub-
ject, in this sense, to uncertainty … The sense in 
which I am using the term is that in which the 
prospect of a European war is uncertain, or the 
price of copper and the rate of interest twenty 
years hence … About these matters there is no 
scientific basis on which to form any calculable 
probability whatever. We simply do not know.

The sociologist Zygmunt Bauman, reflect-
ing on what he calls the current ‘liquid times’ 
(2007) postulates that uncertainty and fast 
change are defining features of our age. He 
says that:

social forms (structures that limit individual choices, 
institutions that guard repetition of routines, 
patterns of acceptable standards) can no longer 
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(and are not expected) to keep their shape for 
long, because they decompose and melt faster 
than the time it takes to cast them, and, once they 
are cast, for them to set.

Uncertainty, in economics, has, perhaps, 
generally been considered a limitation; some-
thing to aim to diminish through risk assess-
ments or standardisation. In contrast 
evolutionary and complexity thinking sug-
gest that a level of variation and messiness is 
necessary for adaptability and development 
as we have already discussed. Nowotny et al. 
(2001), for example, say:

The inherent generation of uncertainties in both 
science and society is one of the crucial elements 
in their co-evolution.

And, indeed Shackle (1958) also recognized 
the generative quality of uncertainty. He said:

the word uncertainty suggests an objectively-
existing future about which we lack knowledge 
rather than [more positively] a void to fill with new 
creation.

So uncertainty is not a new thought to 
economists; the difficulty is, of course, that if 
the economist accepts uncertainty in its 
entirety then he is limited in what he can do 
to try and advise on how to predict or to con-
trol the future. So the economist makes do, 
perhaps, with deterministic models because, 
otherwise, he is limited in what he can 
achieve.

This is not to say that economists have not 
developed approaches which, in terms of the 
range of models shown within Figure 10.1 do 
not move us towards the left of the diagram, 
more towards uncertainty and the messiness 
of the real world. The field of evolutionary 
and complexity economics is increasingly 
well-developed (e.g. Foster and Metcalfe, 
2001; Witt, 2008).

Alan Greenspan (2003) states: Uncer tainty 
is not just an important feature of the mone-
tary policy landscape; it is the defining char-
acteristic of that landscape, and (Greenspan, 
2003) states: Our problem is not the 

complexity of our models but the far greater 
complexity of a world economy whose under-
lying linkages appear to be in a continual 
state of flux.

Modelling market evolution

Instead of simply assuming that a market is 
populated with decision makers having per-
fect information and knowledge the com-
plexity view leads us to consider the more 
realistic situation in which investors, manag-
ers and consumers have very incomplete and 
imperfect knowledge about what will happen 
and in which we do not imagine that there is 
only one possible outcome. They are trying 
to learn and to adapt according to outcomes, 
in line with the notions of exploration and 
exploitation described in March’s (1991) 
classic paper.

Allen et al. (2007) have developed models 
that explore the likely probabilities of suc-
cess where firms adopt not just different 
particular strategies (price/quality) but 
different meta-strategies. For example, these 
may be: (a) a strategy of incremental learning, 
(b) a strategy of imitating the strongest com-
petitor, and (c) an intuitive, entrepreneurial 
strategy represented in the simulations by 
choosing ‘randomly’. These meta-strategies 
are related to those discussed by March 
(2006) in his paper entitled ‘Rationality, 
Foolishness and Adaptive Intelligence’. In 
the case of Allen et al. (2007) the meta-
strategies of incremental learning and of 
imitation of the current winner represent dif-
ferent forms of rationality, while the entre-
preneurs are ‘foolish’. The paper explores the 
relative effectiveness of these different 
approaches, as well as their interdepend-
ences.

Allen et al.’s (2007) model tests the benefits 
or otherwise of ‘learning’ as a meta-strategy, 
which is important because if ‘random strate-
gies’ were found to work better, there would 
be no point in studying, or in obtaining and 
analysing sales and market data; we could 
simply rely on our intuitive powers, or flip a 
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coin, to decide what strategy to adopt. This 
relates to Schumpeter’s (1939) important 
ideas about creative destruction; Schumpeter 
makes no real comment on whether firms can 
actually improve their survival rates as a 
result of internal processes. Instead, it is 
really the introduction of new firms that 
will have randomly better or worse technolo-
gies and internal structures that shapes the 
evolution of the market. Ormerod (2005), 
similarly, shows how it appears from the data 
that firms do not in fact learn.

In building a model such as Allen et al. 
describe, the modeller is confronted with 
the problem of what knowledge and uncer-
tainty an agent can sensibly be assumed to 
have concerning the sales and revenue gen-
eration that will result from a given strat-
egy. If no firm ever went bankrupt then we 
might make the mistake of thinking that 
considerable knowledge was present. 
However, an examination of the statistics 
concerning firm failures (Foster and Kaplan, 
2001; Ormerod, 2005) shows that, whatever 
it is that entrepreneurs or firms believe, they 
are clearly, often completely wrong. The 
bankruptcies, failure rates and life expect-
ancies of firms all attest to the fact that the 
beliefs of the founders, managers or inves-
tors are often not correct. Clearly, what 
really happens is that agents adopt, and 
probably believe in, particular initial strate-
gies relating to product, quality and price, 
and the marketplace is then the theatre of 
learning in which some of them discover 
that their meta-strategy does take them on a 
successful trajectory, and others discover 
that it does not.

For the mathematics of such a model, see 
Allen et al. (2007).

The model generates a market evolution as 
goods or services are produced and con-
sumed. The revenues from the sales of a firm 
are used to pay the fixed and variable costs of 
production, and any profit can be used either 
to increase production or to decrease the 
bank debt if there is any (see Figure 10.3).

All bankrupt firms are ‘re-launched’ into 
the simulation with a randomly chosen 

strategy, but they retain their identity as 
learner, imitator or entrepreneur, so that there 
are always six of each kind competing in the 
system. The program runs a simulation with 
random initial strategies (quality and choice 
of mark-up), and replacements dependent on 
a random sequence of numbers; ‘seeds’ are 
used so that particular random starting points 
can be reproduced.

Results

Summarizing the results of multiple simula-
tions for different random sequences (seeds 1 
to 10) then we find the overall results of 
Figure 10.4. The message from this is clear. 
Learning by experiment is the best meta-
strategy. Adopting entrepreneurial random-
ness is good, and imitating winners is the 
least successful meta-strategy.

It is indeed interesting that entrepreneurs 
really do better than might be expected; in 
addition provide exploratory behaviour of 
use to the rest of the system. This finding 
rather supports the remark made by March 
(2006): Survival may also be served by the 
heroism of fools and the blindness of true 
believers. Their imperviousness to feedback 
is both the despair of adaptive intelligence 
and conceivably its salvation.

Allen et al. (2007) also studied the spread 
of results obtained by all the different ‘learn-
ing’ curves and this showed that the results 
are robust.

Allen et al. (2007) concluded that, 
alt hough in general ‘learning’ is better than 
‘not learning’ the spread of the results shows 
that in any particular case this may turn out 
not to be true. This suggests that, even if a 
player owned the simulation model, it would 
still not be possible to use it to predict the 
exact strategy and meta-strategy to use in 
order to be sure of ‘winning’, because the 
strategy choices that will be made by other 
firms, represented in the simulation by the 
particular random sequence selected, cannot 
be known at any particular moment (Allen 
et al., 2006).
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Figure 10.3 The evolutionary market model

Of course, over time, evolution will occur 
and new technologies, innovations, organiza-
tional changes would change the parameters, 
the mechanisms and the behaviours of the 
agents involved, as with full-blown evolution-
ary models. Over longer times, it is necessary 
to widen the perspective of the exploration 
and try to discern whether or not the dynamical 
system is evolving qualitatively.

DISCUSSION

One important error that we need to expose is 
that after recognizing the shortcomings of 
‘classical science’ in dealing with highly-
connected real-world situations, we can 
simply turn to ‘complexity science’ to provide 
a set of ‘tools’ that can be applied to obtain 
prediction, control and the knowledge neces-
sary to make decisions and policies. We have 
to recognize that prediction, control and 
complete understanding are always an illusion, 

except for exceptional, controlled, closed and 
fixed situations, usually in laboratories.

However, this does not mean that ‘model-
ling’ has no role to play in complex situations. 
On the contrary, the alternative to ‘trying to 
build a model’ is ‘not trying to build one’, 
which can require us to rely on the use of 
intuition and plain pragmatism instead. And, 
as Einstein said: Intuition is the summation 
of prejudices acquired up to age eighteen. 
Thinking itself is a form of modelling.

Faith and hope would mark such an ‘intui-
tive’ approach and the bankruptcy data tells 
us that, except for the very lucky, this is not 
an effective strategy. Pointing out the nature 
of the assumptions that need to hold for a 
particular type of model to be correct can 
help us to explore the behaviour of domains 
of linkage which, for some time, may be 
useful. In other words, complexity tells us 
that ultimately we are involved in pragma-
tism; but instead of simple intuitive pragma-
tism we can adopt a pragmatic approach to 
models and see them as experiments in 
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Figure 10.4 The average results for 10 random sequences, each with six firms of each type

representation, where we retain those that 
seem useful and continue to modify those 
that fail and treat all as an adjunct to think-
ing, not as defining ‘the answer’.

We would argue that information about 
many technical systems cannot be obtained 
in any way other than by simulation. Where 
such simulation and modelling methods fail 
is often where human reactions and responses 
are included, and some simple rationality has 
been assumed. Humans are more compli-
cated, more confused and more heterogene-
ous than that, and also they get bored, 
change, learn and imitate, often incorrectly. 
However, in dealing with many management 
issues there are production systems, logisti-
cal supply and distribution systems, collabo-
ration, competition and changing market 
conditions. In order to ‘manage to survive’ it 
seems clear that trying to understand and 
perhaps ‘model’ the situation is advanta-
geous, providing that any outcomes are not 
taken as the incontrovertible truth. As shown 
in the example in the section ‘Complexity 
and uncertainty in human systems’ it is on the 
whole better to try to ‘learn’ from experiments 
than not. Learning beats intuition or imitation 
on the whole. The learning that is possible is 

limited and needs to be constantly tested and 
re-worked on a constant basis. We can never 
sit back and say, ‘that’s it, I know how the 
system works and can simply continue like 
this’. The world, other agents, and techno-
logical possibilities will move on and what-
ever assumptions are contained in a particular 
representation will be found inadequate at 
some point.

This implies that we are destined and 
indeed evolved to live always with uncer-
tainty. Certainty only arises for closed sys-
tems and correspondingly closed minds. But 
the real world, outside the laboratory, is not 
closed from outside connections or from 
internal heterogeneity and micro-diversity. 
Without uncertainty, we would argue that 
life would not be worth living, since all 
would be pre-determined. But evolution has 
fashioned us to face it and even enjoy it, 
while working all the time to try to reduce it 
through our actions of organizing, construct-
ing and protecting. Uncertainty is one face 
of evolution and complexity, and our game 
is to try to counter it with actions and inno-
vations that actually, whether we mean to or 
not, create new uncertainties as we go. This 
is a never-ending (we hope), multi-level 
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game of creation and response that is far 
more appealing and interesting than the 
closed, controlled and predictable world that 
we may have believed was where science 
had led us. Uncertainty and complexity are 
therefore part of a modern, deeper, scientific 
understanding of the evolutionary processes 
in the universe.
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